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Abstract—Social navigation in care-giving environments - nurs-
ing homes, geriatric residences, for example - is an essential task
for future generations of service robots. Navigating in a complex
environment with elderly people, clinical staff or companions
implies the need to adapt to social conventions the planned
routes, the velocity of approach to people and the spaces of
interaction between robot-human, human-human and human-
object. Currently, navigation algorithms do not take into account
the social complexity of the scenarios like, for example, their
relationship with the hour of the day or the activities carried out
in these scenarios. This article presents a first approach to the
idea of time-dependent social mapping, where the planning of
the social route by the robot takes into consideration variables
that depend on the time and schedules of use of certain spaces.
To this end, this article describes how the spaces of human-
object interaction vary as a function of time and how this affects
the social navigation planned by the robot. Several use cases
have been performed in a simulated environment to asses the
improvements in the robot social navigation using these temporal
variables.

I. INTRODUCTION

The use of social robots in assisted living environments for
older people will become a reality in the coming years [1].
Currently, there are many situations in which human-robot col-
laboration is demanded. In a care-giving center, for instance,
possible scenarios include physical or cognitive activities
proposed by assistive robots, the accompaniment side-by-side
of the elderly person while walking, clinical staff support [1].
In these situations, planning and following paths in a social-
aware fashion is essential to achieve social acceptability [2].

Most of the works in the literature are based on the
proxemics: the robot moves through the environment without
disturbing people’s personal spaces or interrupting their inter-
action with other people or objects in the environment [3].
Planning of paths in these situations is usually solved follow-
ing social mapping techniques that map regions in the environ-
ment where the robot should not navigate [4]. Social mappings
extend metric and semantic maps including social information
of the environment [4]. Consider the scene depicted in Fig. 1a:
in it, the robot plans a route in a care-giving environment
taking into account people who might be interacting with
some of the objects. The space of interaction associated with
an object is known as affordance [5]. In Fig. 1a, around the
object table, its interaction space has been drawn in red during
a group therapy session with elderly people. Consequently,
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the robot avoids this area in its trajectory. However, object’s
interaction space should not be static but should vary over
time. In the above illustrative example, the object table is not
always being used, in fact, its use depends on the therapeutic
sessions schedule. Fig. 1b represents this second situation,
where the robot plans a different trajectory, based on the
activities schedule, without the risk of invading the object
affordances.

(a)

(b)

Fig. 1: Two different everyday scenarios: a) At the time
of planning, the socially accepted path, the robot takes into
account that there is scheduled a therapy in the room; b) Unlike
the previous case, in this new scenario there is not scheduled
therapies in this room.

The scenario described in Fig.1 can be extended to other real
situations in care-giving centers where activities are governed
by schedules established by the clinical or administrative
staff. If a robot includes schedules in its plans, the routes
can be easily adapted, achieving a higher degree of social
acceptance. This article presents a first approach to the idea
of a time-dependent social mapping, where the planning of
routes includes the use of the spaces over time, restricting or
penalizing its route in some areas depending of the activities
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scheduled. This social information is added on top of the
free-space graph which is later used for path planning and
navigation. As a main contribution, this paper describes this
new model for the definition of the time-dependent social
interaction spaces that can be used in most of the navigation
algorithms based on proxemics.

This paper is organised as follows: In section II a discussion
of previous works related to robot navigation in human-
environments is provided. Section III presents an overview
of the proposed social navigation architecture, including time-
dependent social interaction spaces. Next, Section IV describes
the new model of social interaction spaces, including its de-
pendence over time. In Section V, the socially-accepted path-
planning algorithm presented in this paper. Finally, Section VI
outlines the experimental results are outlined and Section VII
summarises the conclusions and future works.

II. RELATED WORKS

Path-planning in human environments is an essential task
for future generation of social robots. The way in which a
robot navigates in real environments, such as an elderly care
center, has a strongly effect on the perceived intelligence [6]. A
path that explicitly takes into account people and interactions
human-human and human-objects in the environment should
not only consider, for instance, minimizing the distance trav-
eled to the target or the time consumption, but also social
rules (e.g., keeping a comfortable distance from humans or
not disturbing people during an interaction with objects in the
environment [2]).

Social navigation started being extensively studied in the
last decade and several methods have been proposed since
then. Some authors propose models of social rules by using
cost functions [7], [8]. A typical solution is to add social
conventions and/or social constraints. In [7], for instance, the
authors use a classical A* path planner in conjunction with
social conventions, like to pass a person on the right. In [8],
they use potential fields and a proxemics model in order to
define regions where robot is able to navigate.

In this respect, most works in the literature use the concept
of social mapping to define social interaction spaces in which
robot navigation is forbidden or penalized [4]. In [4], [9],
[10], for instance, authors define areas in people surroundings
in which robot’s navigation is forbidden by using the concept
of proxemics. In addition, other works use the term object
affordances and/or activity spaces, and prevent robots from
navigating near them creating regions where navigation is also
forbidden or penalized [11], [5]. Recently, in the work pre-
sented in [12], the concept of interaction spaces and their use
to define social paths was introduced. However, all previous
authors and works consider these social maps as static, and
there is no dependence over time or other kind of situations.
Some of these concepts are used in this article where, as main
novelty, it is defined the time-dependence of these spaces of
interaction, taking into account the activities agenda of an
elderly care center. The proposal uses the classical Dijkstra’s
algorithm, where weights of the graphs are modified in order

to take into account the social map of the environment and its
dependence overt time.

III. OVERVIEW OF THE SOCIAL NAVIGATION FRAMEWORK

Robot social navigation in elderly care centers, where all
activities are scheduled by the center’s professionals, requires
a reformulation of the classic social navigation algorithm,
as well as the use of an evolved hardware and software
architecture. This work uses a shared representation of the
environment (Deep State Representation, DSR) and the COR-
TEX cognitive architecture described in [13]. DSR is a multi-
labelled graph that defines the information of the environment:
rooms, humans, objects, as well as the robot, among others. In
this graph, nodes are the elements, and arcs are the relationship
between them (e.g., ”in”, ”connected”, etc) [13]. Software
agents interact with this DSR to include new nodes (e.g., a new
person come in the robot’s room, or a new object is detected)
or update relationships (e.g., two people starts an interaction or
the robot moves to other room). Fig. 2 illustrates a simplified
example of the multi-labelled graph for an elderly care center.

Fig. 2: An example of the Deep State Representation in a real
elderly care center.

The overview of the proposal is described in Fig. 3. The
social path is planned by using a classical Djisktra algorithm
that uses a free-space graph of the environment. In this graph,
the weights of each node depend on the social map generated
by the cognitive architecture. This social map is built by
the social navigation agent according to the DSR, which has
been previously provided by two different agents: the human-
observer agent and the object recognition agent. The first
one, the human-observer agent is in charge of detecting and
tracking people in the scene. The object-recognition agent is
responsible for detecting objects and monitoring their pose in
the environment. Finally, the time dependence of this social
map is provided by the center’s professionals.

IV. TIME-DEPENDING SOCIAL INTERACTION SPACES

To plan a path in real environments with people the pro-
posed work builds a social map of the robot’s surroundings.
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Fig. 3: Overview of the proposed system

This involves the definition of social interaction spaces as-
sociated with people and objects and, in this last case, its
dependence over time. Each of the modules is described
below:

A. Social mapping: people in the environment

Let HN = {h1, h2...hN} be a set of N humans detected by
the human-observer agent, where hi = (x, y, θ) is the pose of
the i-th human in the environment1. To model the interaction
space of each person hi an asymmetric 2-D Gaussian curve
gi(x, y) is used, as described in [11]:

ghi(x, y) = exp−(γ1(x−xi)2+γ2(x−xi)(y−yi)+γ3(y−yi)2) (1)

, where the coefficients γ1, γ2 and γ3 are associated to the
rotation of the function βi. Fig. 4a shows a person, labeled as
’1’, and its personal space modeled by the assymetric Gaussian
described in [11]. Let σs be the variance on the left and right
directions (βi±π/2), which defines the variance along the βi
direction (σh), or the variance to the rear (σr), this function
βi is defined next:

γ1(βi) =
cos(βi)

2

2σ2
+
sin(βi)

2

2σ2
s

γ2(βi) =
sin(2βi)

4σ2
− sin(2βi)

4σ2
s

γ3(βi) =
sin(βi)

2

2σ2
+
cos(βi)

2

2σ2
s

1The actual detection of humans is out of the scope of the paper. In the
experiments carried out it was performed by the CORTEX architecture.

Once people have been detected, the algorithm clusters
humans in the environment according their distances by per-
forming a Gaussian Mixture ([11]) (two people, labeled as ’2’,
have been clustered in Fig. 4b). The personal space function
ghi

of each individual i in the environment is added and
a Global Space function G(p) is built. From this function,
a contour Ji is established as a function of the density
threshold φ. Finally, the contours of these forbidden regions
are defined by a set of k polygonal chain (i.e., polyline) Lk
= {l1, ..., lk}, where k is the number of regions detected by
the algorithm. The curve li is described as li= {a1, ..., am},
being ai = (x, y)i the vertices of the curve, which are located
in the contour of the region Ji.

Finally, the last step classifies the space around a person
into four zones, depending on social interaction: public, social,
personal and intimate zones. Each human hi in the environ-
ment will have three associated spaces: the intimate space,
defined by the polyline Lkintimate; the personal space, defined
by Lk

personal; and the social space, delimited by Lk
social ,

each of them being larger than the previous one, as it was
introduced in [10]. The public zone will be the remaining free
space. These contours, which are created by choosing different
values of the density threshold φ, are illustrated in Fig. 4: in
color red is shown the intimate space, in purple the personal
one and as blue color the social space.

(a)

(b)

Fig. 4: a) People in a simulated caregiving environment; b)
asymmetric Gaussian associated to person ’1’ and clustering
of the group of two people labeled as ’2’ in Fig. 4a.

B. Social mapping: Space Affordances and Activity Spaces

In caregiving centers is common to perform physical or
cognitive therapies where people - elderly or professional -
interact with objects. Robots should be able to detect these
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situations before planning their path. In this sense, literature
defines the concept of Space Affordances to refers areas
where humans usually perform particular activities [5] (i.e., in
interactive scenarios, these spaces are related to objects with
which people interact, for example, the space near a TV or
a table where people are in a specific therapy). These spaces
are called Activity spaces when people are interacting with
them. In this paper, these spaces are not fixed spaces and are
time-depending.

Let OM = {o1, ..., oM} be the set of M objects with which
humans interact in the environment. Each object ok ∈ OM
stores the interaction space iok as an attribute, which is
associated to the space required to interact with this object, the
time-dependence Rok(t) and also its pose pok = (x, y, θk),

ok = (pok , Rok(t), iok)

Different objects in the environments have different in-
teraction spaces iok . For instance, when using the table for
therapies, a smaller space is needed in comparison to when
watching television because this last can be done from a
farther distance. Besides, these spaces are also associated with
the activities scheduling of the center, Rok(t). Rok(t) is a
mathematical function depending over time that is scheduled
by the center’s professionals, where 0 ≤ Rok(t) ≤ Rmax.

The Space Affordance Aok is defined for each object ok ∈
OM by using iok and Rok(t). In this paper, these spaces have
been modeled depending of the shape of the object and the
way that people interact with, and are classified as: i) poster or
TV similar shapes; ii) rectangle shapes (e.g., tables o beds);
and iii) circular shape objects (e.g., tables). Fig. 5 illustrates
the space affordance of each object.
• Poster or TV similar shapes: This kind of objects are

modeled as a symmetrical trapezoid with height t′h and
widths (tw1, tw2), as described in [11]. Time-dependence
is included in the parameters t′h and tw2 by using the
following equations:

tw2 = (tw1 · t′h)/4 (2)

t′h = ah ·R(t) (3)

• Rectangle shape objects: Objects like tables, beds or
stretchers are rectangular objects typically used in care-
giving centers. These objects are modeled as a rectangle
with height r′h and width r′w (see Fig. 5). In a similar
way, time-dependence is also included as:

r′h = rh · (1 +R(t)/4) (4)

r′w = rw · (1 +R(t)/4) (5)

• Circular shape objects: Objects like circular tables are
also common in caregiving centers. In this papers they
are modeled as a circle with center in pok and radius c′r.
Its dependence over time is also included as:

Fig. 5: Social interaction modeling: the Space Affordance of
an interactive object is modeled by: a symmetrical trapezoid
(left); a rectangle (middle); and circular shapes (right)

c′r = cr · (1 +R(t)/4) (6)

Finally, the last step classifies the space around each object
at an instant time t into three regions, depending on its
dependence over time (i.e., no activity scheduled in the
room, unknown or activity scheduled in it). For each region,
a polyline is defined Ltok . The set Lto = {Lto1 , ..., LtoM }
describes the set of polylines used by the navigation algorithm
at an instant time t and they are associated with different costs
in the free-space graph used for navigation.

V. SOCIALLY-ACCEPTABLE PATH-PLANNING ALGORITHM

This section describes the social path-planning algorithm
proposed in this paper. Robot’s environment is represented by
a uniform graph composed of obstacle-free nodes, that have a
constant finite traversal cost, and non-free nodes, which have
an infinite one. The approach described in this work modifies
the costs according to the social map. This final graph is
used to estimate the optimal path using classical Dijisktra’s
algorithm.

A. Graph-based grid mapping

Space is represented by a graph G(N,E) of n nodes,
regularly distributed in the environment. Each node ni has
two parameters: availability, an, and cost, cn. The availability
of a node is a boolean variable whose value is 1 if the space
is free, 0 otherwise. The cost, ci, indicates the traversal cost
of a node, i.e., what it takes for the robot to visit that node
(high values of ci indicates that the robot should avoid this
path). Initially, all nodes have the same cost 1. Fig. 6a shows
an original free-space graph in which all nodes have the same
cost and availability (as there are no obstacles in the area
depicted).

The classical Dijkstra algorithm is employed for determin-
ing the shortest path between an initial position and a target
to which the robot must travel. Given a node of origin, the
algorithm calculates the cost from origin the to the target node
taking into account the cost of the nodes. The cost of a path
is the sum of the cost of the nodes that compose it.

B. Social graph-based grid mapping

The free space graph is modified to include the social spaces
of interaction: firstly, those associated with the interaction
between one person and another -or groups of people-, and
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(a) (b)

Fig. 6: Graph-based grid mapping: a) original free-space
graph; and b) final free-space graph, after including the social
interaction space associated to a person.

secondly, those associated with the interaction between people
and objects.

1) Personal Space mapping: Being A the matrix formed
by the availability of each node of the free space graph and
C the matrix formed by the costs and considering the set
of polygonal curves defined bellow, Lkintimate, Lkpersonal

and Lk
social, this paper present the modification of the cost

and availability of the nodes of the graph according to these
interaction spaces.

In first place, considering only the intimate space around
the person hi, for each polyline lintimatei is defined a polygon
P intimatei formed by the points of the polyline. The avail-
ability ahi of all the nodes Ni ∈ N contained in the space
formed by P intimatei is set to occupied, ahi = occupied. This
means that the robot will not be able to invade this space, as
it would disturb the person. For personal and social spaces,
the availability of the nodes of the graph is not be modified,
but its cost will be changed.

Considering the personal space around the human hi, for
each polyline lpersonali a polygon P personali has been defined.
The cost chi of all the nodes ni ∈ N , contained in the space
formed by P personali will be modified and set to chi = 4.0.
In the same manner, for the social space, a polygon P sociali

is defined for each polyline lpersonali . All the nodes Ni ∈
N contained in the space formed by P sociali will have cost
chi

= 2.0. The public space will be the rest of the graph
whose costs remain unchanged. Fig. 6b show the final free-
space graph, where the costs of nodes are modified according
to the social spaces of interaction.

Intimate areas are forbidden for navigation. Personal and
social spaces are available, but their costs are higher, being
personal spaces more expensive than social spaces. This way,
when the robot plans the shortest path, it will move away from
the person. The social and personal spaces are not considered
occupied so if the robot does not have enough space to
navigate, for example in a corridor, it won’t be blocked, but
it will navigate through the social space, even if its cost is
higher. If the robot does not have another alternative, it will
cross the personal space, but it will never cross the intimate

one.
2) Space Affordances of objects: This same technique has

been used for Space Affordances. Let Lto = Ato1 , ..., A
t
oM

be the set of polylines that describe Affordance of each object
over time. For each Atok the polygon P ti is built. The
availability, aok of the nodes in the graph within the objects
are set to occupied, aok = occupied while availability of the
rest of nodes is not modified. Regarding to cost of nodes in the
free-space graph, these values are associated to its dependence
over time (i.e., no activity scheduled in the room (ctok = 1.5)
, unknown (ctok = 2.5) or activity scheduled in it (ctok = 3).
Thus, nodes of the free space graph Ni ∈ N contained in P ti
are modified in order to set its cost to these values according
to the activities agenda. Fig. 6b shows three different objects
and their space affordances with different colors depending of
the activities scheduling.

VI. EXPERIMENTAL RESULTS

A set of simulated caregiving scenarios have been used to
validate the results of the proposed social navigation system.
The algorithms have been developed in C++ and the tests have
been performed in a PC with an Intel Core i5 processor with
4Gb of DDR3 RAM and Ubuntu GNU/Linux 18.10.

In order to assess the validity of the proposed navigation
approach, the methodology has been evaluated accordingly
to the following metrics: (i) average minimum distance to a
human during navigation, dmin; (ii) distance traveled, dt; (iii)
navigation time, τ ; (iv) cumulative heading changes, CHC;
and (v) personal space intrusions, Ψ. These metrics have been
already established by the scientific community (see [14], [15])

The first experiment is illustrated in Fig. 7 and evaluates the
approach described in this paper for building time-dependent
social interaction spaces. In Fig. 7a a physical therapy room
with three objects is shown (a TV, a circular table and a
stretcher). Previously, the activities scheduling of this room
has been set by the center’s professionals. Fig. 7b, Fig. 7c
and Fig. 7d show three different instant times of the social
interactions spaces of the objects. As appreciated, the cost of
the graph is different according to the activities agenda.

The second test represents a more complex scenario com-
posed of different rooms, objects and people, and where the
activity scheduling is also modified (see Fig. 8). The robot
plans a social path from its current pose to a pose in other
room. In the first test, Rok(t) = 1, that is, there is an activity
scheduled in the physical therapy room; In the second test
Rok(t) = 0.25 (i.e., there is not an scheduled activity in this
same room). Other rooms are set to Rok(t) = 0.25 for both two
tests. In Fig. 8b and Fig. 8c the social paths planned by the
robot are drawn in red color. Table I summarizes the results of
the proposed solutions for the tests described in this section.2

VII. CONCLUSIONS AND FUTURE WORKS

Human-aware robot navigation is a complex skill that has
to take into account real situations that involve human-robot

2Experimental results video: https://youtu.be/YvZen-tXwDQ
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(a) (b)

(c) (d)

Fig. 7: First test: a) simulated physical therapy room with
three objects inside. b) Spaces of interaction and its costs in
the graph (in green) if there is not activities scheduled in the
room; c) if the agenda is unknown (in orange color); and d)
if there is activities scheduled in the room (in red).

(a) (b)

(c)

Fig. 8: Second test: a) simulated physical caregiving center
with three rooms. b) navigation in a room without activities
scheduled by the center’s professionals; and c) robot naviga-
tion in this same room with activities in the agenda.

or human-object interactions. In the case, for instance, of
care environments, some of these interactions are associated
to activities scheduled by center’s professionals. Taking into
account this time-dependence in the social path planning
algorithm is the main aim of the approach described in this
paper. The algorithm is based on the well-known Djisktra’s

TABLE I: Navigation results with space affordances

NO THERAPY THERAPY HOUR

Parameter Value (σ) Parameter Value (σ)

dt (m) 14.03m dt 17.40m
τ 101.79s τ 124.24s

CHC 0.47 (0.11) CHC 1.75 (0.05)

dmin Person 1 (m) 1.39 (39.40) dmin Person 1 (m) 1.89 (64.15)
dmin Person 2 (m) 3.147 (68.18) dmin Person 2 (m) 1.07 (39.00)

Ψ (Intimate) (%) 0.0 (0.0) Ψ (Intimate) (%) 0.0 (0.0)
Ψ (Personal)(%) 0.0 (0.0) Ψ (Personal)(%) 0 (0.0)
Ψ (Social)(%) 0.0 (0.0) Ψ (Social)(%) 0.0 (0.0)
Ψ (Public)(%) 65.01 (1.5) Ψ (Public)(%) 98.39 (1.36)

Ψ (Affordances) (%) 34.98 (1.5) Ψ (Affordances) (%) 1.64 (1.36)

algorithm, where the original free space graph is modified
according to time-dependent social interaction spaces.

Although the results demonstrate the validity of the ap-
proach, future research lines consider the use of a real robot
and questionnaires to gather information on the acceptability
of the planned paths.

REFERENCES

[1] P. Flandorfer. Population Ageing and Socially Assistive Robots for
Elderly Persons: The Importance of Sociodemographic Factors for User
Acceptance. International Journal of Population Research, 2012.

[2] A. Vega, L.J. Manso, P. Bustos and P. Núñez. Planning Human-Robot
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J. Martı́nez-Gómez. The CORTEX cognitive robotics architecture: Use
cases. Cognitive Systems Research, vol. 55, pp. 107-123, 2019.

[14] Okal, B., Arras, K.: Learning socially normative robot navigation be-
haviors with bayesian inverse reinforcement learning. IEEE International
Conference on Robotics and Automation, pp 2889 – 2895, (2016).

[15] Kostavelis, I.: Robot Behavioral Mapping: A Representation that Con-
solidates the Human-robot Coexistence. Robotics and Automation En-
gineering. Volume 1, pp 1–3, (2017).

2020 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
April 15-16, Ponta Delgada, Portugal

145


